GAMES OVER AN IDEAL OF A TOPOLOGICALSPACE AND ITS FUZZIFICATION

Dr. Sanjay Kumar¹& Dr. B. P. Kumar²

¹Deptt. of Mathematics F.N.S. Academy (SS), Gulzarbagh, Patna

²University Department of Mathematics

B. R. A. Bihar University, Muzaffarpur, Bihar.

Abstract : A game, over an ideal of a topological space is studied. The theory of fuzzy sets has also been applied to get the better results.

Keywords : Game theory, Scattered Space & Topological space

1. Introduction

An ideal over a topological space X determines both a topology of X, called I-topology as well as a local function I(X) analogous to the derived set. Associated with I it is possible to formulate a topological series as well as a localisation-series of set properties. These two series simplify the play of a game in the game theory. This paper is concerned with developing a theory of a particular game of pursuit and evasion over an ideal of a topological space and the theory of fuzzy sets has been applied on some results.

2. Games over an ideal

Let G(I, X) be an infinite positional game of pursuit and evason over I where X is a topological space and $I \subset P(X)$ s.t.

- I is closed with respect to union (i)
- I possesses heriditory property, Such collection I is called an ideal over X. (ii)

This game is played as follows : There are two players- P (Pursuer) and E (Evader). They choose alternately consecutive terms of a sequence $\langle E_n/n \in N$, where $N = \{0, 1, 2, \dots, n, \dots\} > of$ subsets of Xs.t. each player knows I, E_0, E_1, \dots, E_n when he is choosing E_{n+1}

A sequence $\langle E_n \rangle$ of subset of X is said to be a play of the game if for all $n \in N$ the following holds :

(i)
$$E_0 = X$$
.

- $E_1, E_3, E_5, \dots, E_{2n+1}$ are the choice of P. (ii)
- $E_1, E_3E_5, \dots, E_{2n+1} \in I$ (iii)
- $E_2, E_4, E_6, \dots, E_{2n+2}$ are the choice of E. (iv)
- *E*1, *E*2 \subset *E*0, *E*3,*E*4 \subset *E*2,; *E*2*n* + 1,*E*2*n* + 2 \subset *E*2*n*. (v)
- $E_1 \cap E_2 = \phi, \ E_3 \cap E_4 = \phi, \ \dots, \ E_{2n+1} \cap E_{2n+2} = \phi.$ (vi)

If $\bigcap \langle E_{2n} \rangle = \phi$ then player P wins the play, otherwise Evader wins the play.

A finite sequence $\langle E_m/m \leq n \rangle$ is admissible for the game if the sequence $\langle E_0, E_1, \dots, E_n, \phi, \phi, \dots, \phi \rangle$ is a play of the game. For admissible sequence $\langle E_0, \dots, E_n \rangle$ and even *n* if $s : \langle E_0, \dots, E_n \rangle \rightarrow P(X)$ and $s (\langle E_0, \dots, E_n \rangle) = E_{n+1}$ then *s* is a strategy for player *P*.

In case of odd n, s is said to be strategy for evader E.

A strategy s is said to be winning for player P in the game G(1, X) if P wins each play of the game with the help of this s.

Similarly s is said to be winning for *E* if *E* wins each play of the game with the help of *s*.

We denote by P(I, X), the set of all winning strategies of P in the game G(I, X) and by E(I, X), the set of all winning strategies of E in the game G(I, X).

A topologicl space X is said to be I-like if the set of all winning strategies of player P is not empty i.e. if $P(I, X) \neq \phi$.

Similarly, a space X is said to be anti I-like if the set of all winning strategies of player E is not empty. That is $E(I, X) \neq \phi$.

The game G(I, X) is said to be determined, if $P(I, X) \neq \phi$ or $E(I, X) \neq \phi$ i.e. if X is I-like or X is anti 1-like.

The following properties follow from the definition of winning strategies :

If
$$I_1, I_2 \subset P(X)$$
 then
 $I_1 \subset I_2 \rightarrow P(I_1, X) \in P(I_2, X)$
 $\rightarrow [P(I_1, X) \neq \phi \Rightarrow P(I_2, X) \neq \phi];$
 $I_1 \subset I_2 \Rightarrow E(I_2, X) \subset E(I_1, X)$
 $\Rightarrow [E(I_2, X) \neq \phi \Rightarrow E(I_1, X) \neq \phi].$

THEOREM: 1

If the game G(I,X) is determined in the favour of player P then the game G (I, E) is also determined in favour of P for all $E \in P(X)$.

PROOF:

```
Let s \subseteq P(I, X).
```

We set $E_0=X$, $F_0 = E$, $E_1=s < E_0 >$, $F_1 = F_0 \cap E_1$.

We form $t \in P(I, E)$ such that $t < F_0 > =F_1$ then $F_1 \in P(E) \cap I$.

Let $F_2 \in P(E)$ with $F_1 \cap F_2 = \phi$.

We set $E_2 = F_2$, $E_3 = s < E_0$, E_1 , $E_2 > F_3 = E_3$, and $t < F_0$, $F_1, F_2 > = F_3$.

Continuing in this manner, the plays $\langle E_n \rangle$ of G(I, X) and $\langle F_n \rangle$ of G(I, E) are obtained.

Now $E_{2n} = F_{2n}$ for all $n \ge 1$. $\cap \langle E_{2n} \rangle = \cap \langle F_{2n} \rangle$.

But $s \in P(I, X) \Rightarrow \cap \langle E_{2n} \rangle = \phi$.

It follows that $\cap \langle E_{2n} \rangle = \phi \Rightarrow t \in P(I, E)$.

THEOREM : 2

If $E \in P(X)$ and $E(I, E) \neq \phi$ then $E(I, X) \neq \phi$.

PROOF:

Let $s \in E(I, E)$.

To prove the theorem, it will be sufficient to define $t \in E(I, X)$, For, set $E_0 = X$, $F_0 = E$, and let $E_1 \in P(X) \cap I$.

Also set $F_1 = F_0 \cap E_1$, $F_2 = s < F_0$, $F_1 >$, $E_2 = F_2$, and $t < E_0$, $E_1 > = E_2$.

Assume $E_3 \in P(X) \cap I$ with $E_0 \subset E_2$.

Again set $F_3 = E_0$, $F_4 = s < F_1$, F_2 , $F_3 >$, $E_4 = F_4$ and $t < E_0$, E_1 , E_2 , $E_3 > = E_4$.

Continuing in this manner, the plays $\langle E_n \rangle$ of G(I, X) and $\langle F_n \rangle$ of G(I, E) are obtained such that

 $\mathbf{E}_{2n} = F_{2n} \text{for all } n \ge I \Longrightarrow \bigcap \langle E_{2n} \rangle = \bigcap \langle F_{2n} \rangle.$

But $s \in E(I, E) \Rightarrow \cap \langle F_{2n} \rangle \neq \phi$.

Hence $\cap \langle E_{2n} \rangle \neq \phi \Rightarrow t \in E(I, X) \Rightarrow E(I, X) \neq \phi.$

DEFINITION: 3

A subset E of a topological space X is said to be locally I at a point x if there exists a neighbourhood (nhd) $U_{(x)}$ such that $E \cap U_{(x)} \in I$.

Space X is said to be locally I if it is locally I at each of its points. It is now possible to introduce the notion of I-derivative corresponding to the ideal I by setting : $I(E) = \{ X \in X/E \text{ is not locally I at } x \}$;

= { $x \in X/E \cap U(x) \notin I$, for all nhd $U_{(x)}$ of x},

which has the following properties ;

- P₁. $I(E \cup F) = I(E) \cap I(F)$, for all $E, F \subset X$.
- P₂. $I(E) = \phi$, if $E \in I$.
- $P_{3}. \qquad I I(E) \subset I(E)$

P₄. I(E) is a closed set and contained in E where $E = \phi(E) = I$ - derivative of null ideal.

P₅. $E \cup I(E)$ is a closure function (denoted by E^{-1}) satisfying :

Kuratowski's Postulates :

C₁. $(E \cup F)^{-1} = E^{-1} \cup F^{-1}$

C₂. $E \subset E^{-1}$,

C₃.
$$E^{-1} = E$$

C₄. $\phi^{-1} = \phi$

Proof is obvious. .

3. I-SCATTERED SPACE

The topology of X is defined by the closure function $E^{-1} = E \cup I(E)$ may be termed as I-closure topology.

DEFINITION: 4

A topological space X is said to be scattered if every nonviod subspace E has an isolated point related to E, i.e. if x is not a limit point of the subspace E.

Now I-scatteredness of a space X with reference to the ideal I can be formulated by following definition.

DEFINITION: 5

A topological space X is I-scattered iff every nonviod subset E of X is locally I at every point x of X.

THEOREM: 6

If there exists an $F \in I$, so that $P(I, E) \neq \phi$ for each $E \in P(X)$ with $E \cap F = \phi$ then $P(I, X) \neq \phi$

PROOF:

Let $F \in I$ such that $P(I, E) \neq \phi$ for each $E \in P(X)$ with $E \cap F = \phi$.

Now $S_E \in P(I, E)$ can be picked up when $E \in P(X)$ such that $E \cap F = \phi$.

set $E_0 = X$, $s(E_0) = E_1 = F$.

Let $E_2 \in P(X)$ such that $E_1 \cap E_2 = \phi$

Then set $F_0 = E_2, F_1 = {}^{S_E}(F_0), E_3 = F_1 \text{ and } E_3 = s < E_0, E_1, E_2 >.$ Assume $E_4 \in P(X) \text{ s.t. } E_4 \subset E_2 \text{ and } E_3 \cap E_4 = \phi$. Again set $F_2 = E_4, F_3 = s_E < F_0 \cdot F_1, F_2 >, E_5 = F_3 \text{ and } E_5 = s < E_0, \dots, E_4 > \text{ and so}$ on.

Continuing in this manner, the plays $\langle E_n / n \in N \rangle$ of G(I, X) and $\langle F_n \rangle$ of $G(I, F_0)$ where $F_n = E_{n+2}$ for all $n \in N$ can be obtained.

Now, $s_E \in P(I, F_0) \Rightarrow \cap \langle F_{2n} \rangle = \phi \Rightarrow P(I, \mathbf{X}) = \phi \Rightarrow S \in P(I, \mathbf{X}).$

THEOREM: 7

If X has a cover { $X_n / n \in N$ } where $X_n \in P$ (X) and G (I, X_n) is determined for each $n \in N$ then G (I, X) is determined.

PROOF:

 $G(I, X_n)$ is determined for each n.

$$\Rightarrow P(I, X_n) \neq \phi$$
, for all *n*

$$\Rightarrow P(I, X) \neq \phi .$$

Let $P(I, X_m) = \phi$ for some $m \in N$ and $G(I, X_n)$ is determined for each $n \in N$. Then $E(I, X_m) \neq \phi$, for some $m \in N$.

Hence by theorem 2, we have $E(I, X) \neq \phi$

 $\Rightarrow G(I, X)$ is determined.

4. Fuzzy Games

A game is determined by information, decisions and goals. But human notions (ideas) and decisions are fuzzy. For, a man with immense entropy functions may err, set right and understanding a little may increases his understanding in the pursuit of some knowledge. Therefore, in a game, perfect information, decisions & goals may not be feasible. We are therefore, led to the introduction of fuzzy games.

© 2017 JETIR November 2017, Volume 4, Issue 11

www.jetir.org (ISSN-2349-5162)

Let G = (N,v) be a nonfuzzy game of the set $N = \{1, 2, 3, ..., n\}$ of n players in which $v : S \rightarrow \mathbb{R}$ is a real valued function (characteristic function) from a family of coalition $S \subset N$ to the set of real numbers *R*. Hence v(A) means the gain which a coalition *A* can aquire only through the action of *A*. The coalition A can be specified by the characteristic function τ^A as follows :

$$\tau^{A}(i) = 0$$
 if $i \notin A$ and 1 if $i \in A$.

A rate of participation τ^A (i) of a player *i* is defined by

 τ^{A} (i) = 1, if a player *i* participates in *A* and

 τ^{A} (i) = 0, if a player i does not participate in *A*.

Consequently, a coalition A is represented by

 $\tau^{A} = (\tau^{A}(1), \tau^{A}(2), \dots, \tau^{A}(n))$

A fuzzy coalition τ is defined as a coalition in which a player *i* can participate with a rate of participation $\tau \in [0, 1]$ instead of $\{0, 1\}$. The characteristic function or coalitional worth function of a fuzzy game is a real valued function $f : [0, 1]^n \rightarrow R$ which specifies a real number $f(\tau)$ for any fuzzy coalition τ .

This fuzzy game is denoted by FG = (N, f).

Conclusion :

In this paper, a new solution concept in fuzzy game, which is very useful in the field of game theory & fuzzy games.

REFERENCES :

- 1. Engelking, *R*. (1966) : Outline of general topology, Amesterdan.
- 2. Kumar, B. P. (1982): Lattice &topological approach to game theory, Ph. D. thesis.
- 3. Telgarsky, *R*. (1974) : Closure preserving covers. Fund. Maths., 85.
- 4. Zadeh, L. A. (1965) : Fuzzy Sets, Information and Control 8.
- 5. B.P. Kumar & Sanjay Kumar (2004) : Covering Properties of spaces defined by games and its fuzzification. Proc. Advances in maths and its appli. Gorakhpur.
- 6. B.P. Kumar, Sanjay Kumar & D.K. Singh (2012) : Mathematical Approach to fuzzy games, Volume 4, Issue, Journal of mathematics PP. 67-70.
- 7. Sanjay Kumar, Ashok Kumar & B.P. Kumar (2014) : A Brief study on Dimensions of games over product, of two Topological spaces, Volume-iv, Issue 4, Vaichariki, A multidisciplinary referred International Research Journal, PP-246-249. ◆