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1. Introduction 

An ideal over a topological space X determines both a topology of X, called I-topology as 

well as a local function I (X) analogous to the derived set. Associated with I it is possible to 

formulate a topological series as well as a localisation-series of set properties. These two series 

simplify the play of a game in the game theory. This paper is concerned with developing a theory 

of a particular game of pursuit and evasion over an ideal of a topological space and the theory of 

fuzzy sets has been applied on some results. 

2. Games over an ideal 

Let G (I, X) be an infinite positional game of pursuit and evason over I where X is a 

topological space and I ⊂ P (X)  s. t. 

(i) I is closed with respect to union 

(ii) I possesses heriditory property, Such collection I is called an ideal over X. 

This game is played as follows : There are two players- P (Pursuer) and E (Evader). They 

choose alternately consecutive terms of a sequence <En/n∈N, where N =  {0, 1, 2, .... n,......} > of 

subsets of Xs.t. each player knows I, E0, E1 ,......, En when he is choosing En + 1 

A sequence <En> of subset of X is said to be a play of the game if for all n ∈ N the 

following holds : 

(i) E0 = X. 

(ii) E1, E3, E5,.....................,E2n + 1 are the choice of P. 

(iii) E1, E3E5,....................., E2n + 1 ∈ I 

(iv) E2, E4, E6,....................., E2n + 2 are the choice of E. 

(v) E1, E2⊂E0, E3,E4 ⊂ E2, ..................; E2n + 1,E2n + 2 ⊂ E2n. 

(vi) E1 ∩ E2 = ϕ,  E3 ∩ E4 = ϕ , ................., E2n + 1∩ E2n + 2 = ϕ. 

If ∩<E2n>  = ϕ  then player P wins the play, otherwise Evader wins the play. 
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A finite sequence <Em/m ≤ n> is admissible for the game if the sequence <E0, E1, ..... En, ϕ, 

ϕ, ...... , ϕ >is a play of the game. For admissible sequence <E0, ........ , En> and even n if s : <E0, 

.......... , En> → P(X) and s (<E0, ............., En>)  = En+1 then s is a strategy for player P. 

In case of odd n, s is said to be strategy for evader E. 

A strategy s is said to be winning for player P in the game G (1, X) if P wins each play of 

the game with the help of this s. 

Similarly s is said to be winning for E if E wins each play of the game with the help of s. 

We denote by P (I, X), the set of all winning strategies of P in the game G (I, X)  and by E (I, X), 

the set of all winning strategies of E in the game G (I, X). 

A topologicl space X is said to be I-like if the set of all winning strategies of player P is not 

empty i.e. if P (I, X) ≠ ϕ. 

Similarly, a space X is said to be anti I-like if the set of all winning strategies of player E is 

not empty. That is         E(I, X) ≠ ϕ. 

The game G (I, X) is said to be determined, if P (I, X) ≠ ϕ or E (I, X) ≠ ϕ i.e. if X is I-like or 

X is anti 1-like. 

The following properties follow from the definition of winning strategies : 

If  I1, I2  ⊂ P(X)  then 

I1 ⊂ I2→ P(I1, X) ∈ P(I2, X) 

→ [P(I1, X) ≠ ϕ ⇒ P(I2, X) ≠ ϕ] ; 

I1⊂I2 ⇒E(I2, X) ⊂ E(I1, X) 

⇒ [E(I2, X) ≠ ϕ⇒ E(I1, X) ≠ ϕ ]. 

THEOREM : 1 

If the game G (I,X)  is determined in the favour of player P then the game G (I, E) is also 

determined in favour of P for all        E  ∈  P (X). 

PROOF : 

Let s⊂P (I, X). 

We set E0=X, F0 = E, E1= s <E0 >,  F1 = F0∩E1. 

We form t ∈ P (I, E ) such that t <F0> =F1 then 

F1∈ P(E) ∩ I. 

Let F2∈P(E) with F1∩F2 = ϕ . 

We set E2= F2, E3 = s <E0, E1, E2>F3 = E3 ,  and t<F0 , F1,F2 >  = F3. 

Continuing in this manner, the plays <En> of G (I, X) and <Fn> of G (I, E ) are obtained. 

Now E2n  = F2n for all n ≥ 1.  ∩ <E2n> =  ∩<F2n> . 

But s ∈ P (I, X) ⇒∩<E2n> = ϕ . 

It follows that  ∩< E2n> = ϕ ⇒ t∈ P (I, E). 

 

THEOREM : 2 

If E∈P(X)  and E(I, E) ≠ ϕ then E (I, X) ≠ ϕ. 
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PROOF : 

Let s∈E (I, E). 

To prove the theorem, it will be sufficient to define t∈E (I, X) , For, set E0 = 

X, F0 = E, and let E1∈ P(X) ∩ I. 

Also set F1=F0 ∩ E1, F2 = s <F0, F1 >, E2= F2, and t<E0, E1> = E2. 

Assume E3∈P(X) ∩ I with E0 ⊂E2. 

Again set F3 = E0, F4 = s<F1, F2, F3>, E4 = F4 and t <E0, E1, E2, E3 >  = E4. 

Continuing in this manner, the plays <En> of G (I, X) and <Fn> of G (I, E)  are obtained 

such that 

E2n = F2nfor all  n≥ I⇒∩<E2n> =∩ <F2n>. 

But     s∈E (I, E) ⇒∩<F2n>≠ ϕ. 

Hence∩ <E2n>≠ ϕ⇒ t∈E (I, X) ⇒  E (I, X) ≠ ϕ. 

DEFINITION : 3 

A subset E of a topological space X is said to be locally I at a point x if there exists a 

neighbourhood (nhd) U(x) such that E∩U(x) ∈I. 

Space X is said to be locally I if it is locally I at each of its points. It is now possible to 

introduce the notion of I-derivative corresponding to the ideal I by setting : I(E) = { X∈X/E is not 

locally I at x }; 

 

= {x ∈X/E ∩ U(x) ∉  I, for all nhd U(x) of x} , 

which has the following properties ; 

 P1. I(E ∪F) = I (E) ∩ I (F), for all E, F ⊂ X. 

P2.      I (E) = ϕ, if E∈I. 

P3. I I (E) ⊂ I (E) 

P4. I(E) is a closed set and contained in E where E = ϕ (E) = I - derivative of null ideal. 

 

 

P5. E ∪ I (E) is a closure function (denoted by E–1)  satisfying  : 

Kuratowski’s Postulates : 

C1. (E ∪ F)–1 = E–1 ∪ F–1 

C2. E⊂E–1, 

C3. E–1 = E 

C4. ϕ –1 = ϕ 

Proof is obvious. .  

3 .   I-SCATTERED SPACE   

The topology of X is defined by the closure function E–1 = E∪I (E)  may be termed as I-

closure topology. 
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DEFINITION : 4 

A topological space X is said to be scattered if every nonviod subspace E has an isolated 

point related to E, i.e. if x is not a limit point of the subspace E. 

Now 1-scatteredness of a space X with reference to the ideal I can be formulated by 

following definition. 

DEFINITION : 5 

A topological space X is I-scattered iff every nonviod subset E of X is locally I at every 

point xof X. 

THEOREM : 6 

If there exists an F∈I , so that P (I, E) ≠ ϕ  for each E∈P (X) with E∩F = ϕ then P(I, X) ≠ ϕ   

PROOF : 

Let F∈I   such that P (I, E) ≠ ϕ  for each E∈P (X) with E∩F = ϕ  . 

Now SE∈P (I, E) can be picked up when E∈P (X) such that E∩F = ϕ. 

set    E0 = X, s(E0) = E1 = F. 

Let E2∈ P (X) such that E1∩E2 = ϕ  

Then set F0= E2, F1 = SE (F0), E3 = F1 and E3= s<E0 , E1, E2 >. 

Assume E4∈P (X) s.t. E4⊂E2 and E3∩E4 = ϕ . 

Again set 

on. 

F2 = E4,  F3 = sE<F0’F1, F2 >, E5 = F3 and E5 = s< E0, ......... , E4 >  and so 

Continuing in this manner, the plays <En / n∈N> of G (I, X) and <Fn> of G (I, F0) where Fn 

= En + 2 for all n∈N can be obtained. 

Now, sE∈P (I, F0) ⇒∩<F2n> = ϕ ⇒P (I, X) = ϕ ⇒S∈P (I, X). 

THEOREM : 7 

If X has a cover { Xn / n∈N } where Xn∈P (X) and G (I, Xn ) is determined for each n∈N then 

G (I, X)  is determined. 

PROOF : 

G (I, Xn ) is determined for each n. 

⇒P(I, Xn) ≠ ϕ  ,  for all n. 

⇒P(I, X) ≠ ϕ . 

Let P (I, Xm) = ϕ for some m∈N and G (I, Xn) is determined for each n∈N. Then E ( I, Xm) ≠ 

ϕ, for some m∈N. 

Hence by theorem 2, we have E(I, X) ≠ ϕ   

⇒G (I, X)  is determined. 

 

 

4 .       Fuzzy Games 

A game is determined by information, decisions and goals. But human notions (ideas) and 

decisions are fuzzy. For, a man with immense entropy functions may err, set right and 

understanding a little may increases his understanding in the pursuit of some knowledge. 

Therefore, in a game, perfect information, decisions & goals may not be feasible. We are therefore, 

led to the introduction of fuzzy games. 
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Let G = (N,v) be a nonfuzzy game of the set N = {1, 2, 3,...., n}  of n players in which v : 

S→R is a real valued function (characteristic function) from a family of coalition S⊂N to the set of 

real numbers R. Hence v(A) means the gain which a coalition A can aquire only through the action 

of A. The coalition A can be specified by the characteristic function A as follows : 

A(i) = 0 if i∉ A and 1 if i∈ A. 

A rate of participation A (i) of a player i is defined by 

 A (i) = 1, if a player i participates in A and 

A (i) = 0, if a player i does not participate in A. 

Consequently, a coalition A is represented by 

A = (A (l), A (2),.... A (n)) 

A fuzzy coalition  is defined as a coalition in which a player i can participate with a rate of 

participation ∈ [0, 1] instead of {0, 1}. The characteristic function or coalitional worth function of 

a fuzzy game is a real valued function f : [0, 1]n→R which specifies a real number f () for any 

fuzzy coalition  . 

This fuzzy game is denoted by FG = (N, f). 

Conclusion : 

In this paper, a new solution concept in fuzzy game, which is very useful in the field of 

game theory & fuzzy games. 
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